

SCHOOL OF ENGINEERING

Systems Aspects for Ultrafast Switching

Prof. Jane Lehr University of New Mexico

Portable Ultra-Wideband Radiating Sources

Impulse Radiating System met both Peak Field & PRF specifications!

Vp = 1.2 MVTr = 200 ps

World record for Peak **E** at distance

First ACTD at Kirtland AFB

Two Important Lessons:

- Systems Perspective
- Identify Physics Limits

Antenna Arrays

Directive pattern

Electronic Beam Steering

No moving parts
Low profile
Can be conformal
Facilitates multibeam
Self pointing

Adaptive Directivity

Figure 1. Adjacent Satellite Interference Constraints

$\Delta t \le 0.1 \frac{T}{4} = 0.1 \frac{\lambda}{4c}$

Ultrafast Switching Enables

Modularity,
Protection
&
Control

Cyber Physical Control System for Grid

Robust-Recoverable

Power transmission and distribution networks are greatly dispersed and highly **complex** engineering systems with different degrees of connectivity. One of the key issues is that the **dynamic** electricity supply and demand balance needs to be maintained in **real- -time**. Natural disasters, severe weather and attacks make reliable operation a very difficult task.

Ultrafast Switches

Resilience Framework

Grid Recovery Strategy Including microgrids

Jufri, Fauzan Hanif, Victor Widiputra, and Jaesung Jung. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies." *Applied energy* 239 (2019): 1049-1065.; X. Liu, et al "Microgrids for Enhancing the Power Grid Resilience in Extreme Conditions," in IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 589-597, March 2017, doi: 10.1109/TSG.2016.2579999.

Speed of control/ Size of Circuit

Next Generation DC System: Energy loss is reduced at multiple points of operation

Small Circuits need Faster
Detection and Response
for Protection and Resilience

DC Circuit Breaker Demo Behavior was Predicted

- Test sequence includes the opening and closing of relays for safety purposes
- Based on protocol and circuit theory, circuit behavior (i.e. waveforms) can be predicted
- Time intervals are sensitive to current levels

Interval I $[t_1 - t_0]$

 Fault current rises at t₀ until t₁ when the fault current is detected, turning JFETs OFF

Interval II
$$[t_2 - t_1]$$

 JFET voltage starts to rise at t₁ and JFET/load current starts to decrease.

Interval III $[t_3 - t_2]$

- PCSS is triggered at high-gain mode at t₂, diverting fault current from JFET leg to shunt cap.
- Shunt capacitor voltage rises based on RC value.

Interval IIV $[t_4 - t_3]$

 PCSS voltage reaches OFF state and breaks remaining current.

DC Circuit Breaker Timing Diagram

A lot of tasks must occur have to occur in that 500 μs!

- The normally on leg will turn off in about ~100ns.
- ~ 10's of ns for deadtime on either side

Laser Parameters: Wavelength, Peak Power, Pulse Length, Jitter And delay time

Not typically provided by manufacturer

Testing determined Circuit behavior is sensitive to laser jitter

• Laser trigger at t=0, but laser jitter causes it to fire at various voltages in the ramp during JFET turn off

PCSS didn't trigger into lock on mode ~905 V on PCSS when laser trigger occurred

PCSS triggered into lock on mode ~1230 V on PCSS when laser trigger occurred

Laser and Laser Diode Wavelength Options

^{*} Neodymium-doped yttrium aluminum garnet

Optical Energy

- 10µJ to 1mJ of 532nm with 5 ns pulse width light required in previous experiments
- Laser diode and LED sources available in powers from mW to 100+W for CW operation
- Conversion from optical power to energy is time dependent.

This may be a physics limit

Through-time for DC breaker includes laser

Atoms remain
In the upper level
for a long time

Simple Laser Diode Is current pumped

& releases light quickly

Time to fill cavity is large part of delay

650W LD has 10 ns turn on time

Passive Q switched can have ~ 200 μs delay and 10 μs jitter

Driver 150 ps jitter (measured)

Laser technology is very market driven

Laser Beam Profile after collimation

650W@905 nm

The measured beam profiles shows our laser diode is a "wide stripe Laser diode" which radiates multiple quasi-gaussian TEM modes. This makes the collimating and focusing of our laser challenging.

Light triggers

Fiber delivery

- EMI resistant
- Multiple triggering
- Allows remote actuation

Laser technology is very market driven

Fusion: Limitless Clean Energy

One glass of water will provide enough fusion fuel for one person's lifetime.

Commonwealth Fusion website

Fusion Requires Highly Reliable Current Drivers

The elimination of electrodes, high power efficiency and dynamic plasma stabilization provides a favorable scaling ... & can operate continuously with multiple helicity injectors phased appropriately in time.

Zap Energy is building a seriously cheap, compact, scalable fusion reactor without costly and complex magnetic coils.

LANL's Plasma Liner Experiment (PLX)

Reliability implies Repeatability

Modularity requires Simultaneity and Fast Triggered Protection

PLX's goal is to demonstrate the compression & heating of a magnetized D-D plasma to fusion conditions by a spherical plasma linear formed by an array of hypervelocity plasma jets

UNIV

Genesis: Isotropic Compression Experiments

Switches need a broad operating capabilities

Increasingly Complex Electromagnetic Environments

Multi timescale Radiators + Various Coupling

Coupling depends on wavelength

Time – Frequency

Radiated Emissions

Apertures

Fast risetime High frequency/short wavelength

Transmission Lines couple to frequencies corresponding to their length

Frequency - Length and the Microwave Condition

$$0.1\lambda < d_{ckt} < 10\lambda$$

 $d_{ckt} = \text{circuit dimension}$ $\lambda = \text{excitation wavelength}$

Lumped Circuit d << λ

Microwave d $\sim \lambda$

Optic $d \gg \lambda$

Apertures

EM Topology – Heirarchical Approach to EMC

source

Allows for shielding techniques though out the spectrum

Shielding Topology

Penetrations & Conducted Emissions

Inside module, other techniques may also be used, ground planes, multilevel circuits, EMI filters, etc.

Enclosures

Analyze
E- (capacitive)
&
H (inductive)
Coupling Separately

Amazing
Commercial
Products
Available

Topology for Fault Containment within a System

Fig. 1 Basic Concept of a FCR

Fig. 2 FCRs not allowing failure propagation

A Different System Consideration: The Altitude Dilemma

Higher altitude requires more distance for a given voltage

In nonuniform electric fields,
if only breakdown is a concern, the allowable
minimum electric field distribution is much
higher - several kV/cm 26

Low Pressure DC Corona Discharge (Pin-to-Plane)

- Non-uniform Electric Field Geometries
- Stable discharge

$$R_{cor} = \frac{V}{I_{cor}}$$

Air Breakdown

Longer timescales & lengths allow more processes to contribute ... needing less peak voltage for breakdown

UNIM

Picasso or T. S. Eliot said

"the good artist imitates and the great artist steals"

A great artist will select elements from other's and incorporate it into their own unique mix of influences

UNIM

Nesting

Introduce strategically placed conductors for E field control

Reducing PFN Marx Generator Size Using Nested Solid Insulation

R. J. Adler, J. Gilbrech, D. New Applied Energetics 3590 E. Columbia Str., Tucson, AZ 85714

Determine structure – since conductors are not current carrying, how much bulk is required?

Ferrite Pulse Sharpeners

Fig. 12. Structure diagram of one-section ferrite transmission line.

Fig. 3. Simplified 2-D axisymmetric model of the ferrite transmission line.

Fig. 4. Magnetization process simulation of magnetic core.

Accelerator Cavities

For accelerators and fast modular circuits

- Magnetic cores act as 1:1 transformers to deliver energy
- Cavities allow stacking
- Voltage Adder Topology demonstrated
- Needs control

Summary

Light Triggering and Ultrafast Switches are a key enabling technology to increase the resilience of the evolving power system & encourages modularity and protection

